제품 소개

P4M-400은 모듈형 PHPoC 제품입니다. PHPoC 기능을 모듈형태로 제공하기 때문에 사용자 어플리케이 션에 알맞는 보드를 구현할 수 있습니다.

P4M-400은 10/100M 이더넷을 물론 USB 타입의 무선랜 동글을 이용한 무선랜 인터페이스도 가능합니 다. 또한 아날로그 입력, UART, SPI, I2C, 하드웨어 타이머, 디지털 입/출력 등 여러 가지 인터페이스를 이 용하여 사용자의 요구에 맞는 다양한 시스템을 구현할 수 있습니다.

주요 특징

- PHPoC 모듈형 제품
- 자체 개발한 PHPoC 인터프리터 탑재
- USB를 이용한 간편한 개발 환경 제공
- 10/100Mbit 이더넷 지원
- IEEE802.11b/g 무선랜 카드 연결을 위한 USB 포트 제공
- 최대 26개의 디지털 I/O포트 사용 가능
- 4개의 아날로그 입력포트 제공
- 2개의 UART포트 제공
- 4개의 하드웨어 타이머 제공
- I2C, SPI 인터페이스 제공
- RTC용 32.768KHz 크리스탈 내장
- TCP/IP 지원
- 웹 서버 기능 지원
- 웹소켓, 텔넷, SSH 및 SSL 지원
- 다양한 라이브러리 제공: Email, DNS, MySQL 등
- 전용 개발 툴(PHPoC 디버거) 제공

하드웨어 사양

	입력전압	DC 3.3V (±0.16V)		
저이	소비저르	평상시 - 약 110mA,		
신권	꼬미신규	절전모드시 - 200uA 미만		
	치수	50mm x 32mm x 9mm		
무	게	약 8g		
	LIADT	2 X UART포트(UARTO ~ 1),		
	UARI	통신속도: 1,200 bps ~ 230,400 bps		
		10/100Mbps 이더넷		
	네트워크	IEEE802.11b/g 무선랜		
		(Ralink RT3070/5370 chipset 무선랜 동글 필요)		
	USB	USB 호스트 - USB 무선랜 어댑터 연결용		
인터페이스		USB 디바이스 - PC 연결용		
	디지털 입/출력	최대 26 포트		
	아날로그 입력	ADC_CH0 ~ 3, AREF, 12-bit 분해능		
	하드웨어 타이머	HT0 ~ 3, 토글/펄스/PWM출력모드, 캡쳐모드		
	SPI	NSS, SCK, MISO, MOSI		
	I2C	SCL, SDA		
무선랜 보안		WPA-PSK / WPA2-PSK, WPA-Enterprise(TLS/TTLS/PEAP)		
온도	동작/저장온도	-40°C ~ 85°C		
·····································		유럽 RoHS 규격 준수		

치수

※ 주의 : 모듈의 오삽 및 역삽을 방지하기 위해 P1 ~ P4 커넥터의 위치는 좌우 비대칭으로 설계되었습 니다.

※ 치수(단위 : mm)는 제품 상태 및 재는 각도 등에 따라 약간의 오차가 있을 수 있습니다.

레이아웃

P4M-400은 4개의 6 x 2 핀 헤더(P1 ~ P4)로 인터페이스 됩니다. 핀 사이 간격은 2mm 입니다.

Ρ1

번호	이름	방향	설명
P1.1	GND	-	Ground
P1.2	GND	-	Ground
P1.3	TPTX+	입/출력	Ethernet Transmit +
P1.4	TPTX-	입/출력	Ethernet Transmit -
P1.5	TPRX+	입/출력	Ethernet Receive +
P1.6	TPRX-	입/출력	Ethernet Receive -
P1.7	GND	-	Ground
P1.8	GND	-	Ground
P1.9	USB_H_D+	입/출력	USB Host Data +
P1.10	USB_H_D-	입/출력	USB Host Data -
P1.11	USB_D_D+	입/출력	USB Device Data +
P1.12	USB_D_D-	입/출력	USB Device Data -

P2

번호	이름	방향	설명
P2.1	VBUS	입력	USB Device VBUS
P2.2	+3.3V	-	+3.3V Power Input
P2.3	HT0(1.6)	입/출력	UIO 1.6 / Hardware Timer/Counter 0

번호	이름	방향	설명	
P2.4	HT1(1.7)	입/출력	UIO 1.7 / Hardware Timer/Counter 1	
P2.5	HT2(1.8)	입/출력	UIO 1.8 / Hardware Timer/Counter 2	
P2.6	HT3(1.9)	입/출력	UIO 1.9 / Hardware Timer/Counter 3	
P2.7	UIO(0.14)	입/출력	UIO 0.14	
P2.8	SRO(0.15)	입/출력	UIO 0.15 / Slave Reset Out	
P2.9	ISP#	입력	ISP Input (Active LOW)	
P2.10	DTX	출력	Debug Out (UART)	
P2.11	RESET#	입력	Reset Input (Active LOW)	
P2.12	VBAT	입력	Battery Input	

Ρ3

번호	이름	방향	설명
P3.1	NSS(0.0)	입/출력	uio 0.0 / Spi NSS
P3.2	SCK(0.1)	입/출력	uio 0.1 / Spi sck
P3.3	MISO(0.2)	입/출력	uio 0.2 / Spi miso
P3.4	MOSI(0.3)	입/출력	uio 0.3 / Spi mosi
P3.5	U0TX(0.4)	입/출력	UIO 0.4 / UARTO TX
P3.6	U0RX(0.5)	입/출력	uio 0.5 / uarto rx
P3.7	SCL(0.6)	입/출력	UIO 0.6 / I2C SCL
P3.8	SDA(0.7)	입/출력	uio 0.7 / I2C SDA
P3.9	U0RTS(0.8)	입/출력	UIO 0.8 / UARTO RTS / UARTO TxDE
P3.10	U0CTS(0.9)	입/출력	uio 0.9 / uarto cts
P3.11	U1TX(0.10)	입/출력	UIO 0.10 / UART1 TX
P3.12	U1RX(0.11)	입/출력	UIO 0.11 / UART1 RX

P4

번호	이름	방향	설명
P4.1	U1RTS(0.12)	입/출력	UIO 0.12 / UART1 RTS / UART1 TxDE
P4.2	U1CTS(0.13)	입/출력	UIO 0.13 / UART1 CTS
P4.3	STX(1.10)	입/출력	UIO 1.10 / Slave TX
P4.4	SRX(1.11)	입/출력	UIO 1.11 / Slave RX
P4.5	GND	-	Ground
P4.6	GND	-	Ground
P4.7	+3.3V	-	+3.3V Power Input
P4.8	AREF	입력	ADC Reference Input
P4.9	ADC0(1.0)	입/출력	UIO 1.0 / ADC0
P4.10	ADC1(1.1)	입/출력	UIO 1.1 / ADC1
P4.11	ADC2(1.2)	입/출력	UIO 1.2 / ADC2
P4.12	ADC3(1.3)	입/출력	UIO 1.3 / ADC3

LED

모듈의 중앙 하단에 사용자 정의 LED가 있습니다. 이 LED는 UIO 0.31에 연결되어 있고, 제품 출고시 상 태 표시용 LED로 설정됩니다. 필요에 따라서 사용자 출력 포트로 설정이 가능하며 LOW를 출력하면 LED가 켜집니다.

인터페이스

이 페이지는 P4M-400이 제공하는 여러 인터페이스에 따른 각 핀에 대한 설명을 제공합니다. 사용하지 않는 핀들은 특별한 언급이 있는 경우를 제외하고 연결하지 않아도 됩니다.

시스템

• +3.3V

제품에 사용할 DC 3.3V 전원을 입력합니다. 입력 허용 전압 범위는 DC 3.15V ~ 3.45V입니다. 제 품의 안정적인 동작을 위해서는 DC 3.3V를 안정적으로 출력하면서 500mA 이상의 전류를 공급할 수 있는 전원을 연결하시기 바랍니다.

• GND

메인 시스템 Ground에 연결합니다. 신호의 return path를 짧게 하기 위해 Ground는 되도록 넓게 하는 것이 좋습니다.

• RESET#

시스템을 재 시작할 때 사용하는 핀입니다. 이 핀으로 1밀리초(1ms) 이상의 LOW 펄스를 입력하 면 시스템이 재 시작됩니다. 이 핀은 LOW Active이므로 평상시에는 100K 옴 저항으로 풀업하여 HIGH 상태를 유지해야 합니다.

• ISP#

ISP#는 제품을 ISP모드로 전환하는데 사용하는 핀입니다. 이 핀은 LOW Active이므로 평상시에는 100K 옴 저항으로 풀업하여 HIGH 상태를 유지해야 합니다.

※ ISP모드는 무한 리셋 상태 복구하기 등 시스템 유지관리를 위해 반드시 필요한 모드입니다.

• VBAT

전원이 인가되지 않았을 때 제품 RTC에 내장된 시간정보 및 backup SRAM 내용이 지워지지 않도 록 VBAT에 배터리를 연결합니다. 배터리를 연결하지 않을 경우 +3.3V에 연결합니다. 허용전압은 DC 1.65V ~ DC 3.6V 입니다.

이더넷

번호	이름	방향	설명
P1.3	TPTX+	입/출력	Ethernet Transmit +
P1.4	TPTX-	입/출력	Ethernet Transmit -
P1.5	TPRX+	입/출력	Ethernet Receive +
P1.6	TPRX-	입/출력	Ethernet Receive -

P4M-400은 10/100Base-TX 이더넷 인터페이스를 제공합니다. 이더넷을 사용하려면 트랜스포머가 포함 된 RJ45 커넥터를 연결해야 합니다. 연결 방법은 응용 회로도를 참조하시기 바랍니다.

USB 호스트 (무선랜)

번호	이름	방향	설명
P1.9	USB_H_D+	입/출력	USB Host Data +
P1.10	USB_H_D-	입/출력	USB Host Data -

P4M-400의 USB 호스트포트에 RT3070 및 RT5370 무선랜 동글을 이용해 IEEE802.11b/g 무선랜 통신이 가능합니다. USB 호스트 포트는 USB A타입 커넥터를 연결해야 합니다. 연결 방법은 응용 회로도를 참조 하시기 바랍니다.

USB 디바이스

번호	이름	방향	설명
P1.11	USB_D_D+	입/출력	USB Device Data +
P1.12	USB_D_D-	입/출력	USB Device Data -
P2.1	VBUS	입력	USB Device VBUS

이 포트는 제품의 개발 및 설정을 위해 반드시 연결해야 합니다. 이 포트를 연결하고 USB케이블로 제품 과 PC를 연결한 후 개발 툴(PHPoC 디버거)을 이용해 제품에 접근할 수 있습니다. USB 디바이스 포트는 B타입 USB 커넥터, mini USB 또는 micro USB 커넥터 중 하나를 연결 합니다.

※ 참고: P4M-400은 VBUS핀을 통해서 전원을 공급받지 않습니다.

디지털 입/출력

번호	이름	방향	설명
P3.1	NSS(0.0)	입/출력	uio 0.0 / Spi NSS
P3.2	SCK(0.1)	입/출력	UIO 0.1 / SPI SCK
P3.3	MISO(0.2)	입/출력	uio 0.2 / Spi miso
P3.4	MOSI(0.3)	입/출력	uio 0.3 / Spi mosi
P3.5	U0TX(0.4)	입/출력	UIO 0.4 / UARTO TX
P3.6	U0RX(0.5)	입/출력	uio 0.5 / uarto rx
P3.7	SCL(0.6)	입/출력	UIO 0.6 / I2C SCL
P3.8	SDA(0.7)	입/출력	UIO 0.7 / I2C SDA
P3.9	UORTS(0.8)	입/출력	UIO 0.8 / UARTO RTS / UARTO TxDE
P3.10	U0CTS(0.9)	입/출력	UIO 0.9 / UARTO CTS
P3.11	U1TX(0.10)	입/출력	UIO 0.10 / UART1 TX
P3.12	U1RX(0.11)	입/출력	UIO 0.11 / UART1 RX
P4.1	U1RTS(0.12)	입/출력	UIO 0.12 / UART1 RTS / UART1 TxDE
P4.2	U1CTS(0.13)	입/출력	UIO 0.13 / UART1 CTS
P2.7	UIO(0.14)	입/출력	UIO 0.14
P2.8	SRO(0.15)	입/출력	UIO 0.15 / Slave Reset Out
P4.9	ADC0(1.0)	입/출력	UIO 1.0 / ADC0
P4.10	ADC1(1.1)	입/출력	UIO 1.1 / ADC1
P4.11	ADC2(1.2)	입/출력	UIO 1.2 / ADC2
P4.12	ADC3(1.3)	입/출력	UIO 1.3 / ADC3
P2.3	HT0(1.6)	입/출력	UIO 1.6 / Hardware Timer/Counter 0
P2.4	HT1(1.7)	입/출력	UIO 1.7 / Hardware Timer/Counter 1
P2.5	HT2(1.8)	입/출력	UIO 1.8 / Hardware Timer/Counter 2
P2.6	HT3(1.9)	입/출력	UIO 1.9 / Hardware Timer/Counter 3
P4.3	STX(1.10)	입/출력	UIO 1.10 / Slave TX
P4.4	SRX(1.11)	입/출력	UIO 1.11 / Slave RX

아날로그 입력, UART, SPI, I2C 등의 기능을 지원하는 핀들은 디지털 입/출력포트로 설정하여 사용할 수 있습니다. 이 포트들은 UIO 0과 UIO 1에 맵핑 되어 있습니다. 디지털 입/출력 포트는 소프트웨어 타이머 의 출력포트로도 동작이 가능합니다.

• 디지털 입/출력 전기적 특성

파라미터	설명	최소 값[V]	최대 값[V]	전류 조건
V _{IH}	HIGH레벨 입력 전압	2.31	-	-
V _{IL}	LOW레벨 입력 전압	0	0.99	-
V _{OH}	HIGH레벨 출력 전압	2.9	-	±8mA(CMOS)
V _{OH}	HIGH레벨 출력 전압	2.4	-	±8mA(TTL)
V _{OL}	LOW레벨 출력 전압	-	0.4	±8mA(CMOS/TTL)

※ 참고: 모든 디지털 입력 포트의 최대 입력전압은 5V이며, 출력포트의 최대 출력전류는 ±8mA입니다.

아날로그 입력

번호	이름	방향	설명
P4.8	AREF	이미	ADC Reference Input
P4.9	ADC0(1.0)	입/출력	UIO 1.0 / ADC0
P4.10	ADC1(1.1)	입/출력	UIO 1.1 / ADC1
P4.11	ADC2(1.2)	입/출력	UIO 1.2 / ADC2
P4.12	ADC3(1.3)	입/출력	UIO 1.3 / ADC3

ADC0, ADC1, ADC2 및 ADC3은 아날로그 입력포트이며 각각 12bit의 분해능을 가집니다. ADC0 ~ ADC3의 측정전압은 기준전압에 따라서 달라집니다(0V ~ 기준전압까지 측정이 가능). 기준전압은 AREF 핀으로 입력하며 AREF핀의 입력 전압 허용 범위는 DC 2.1V ~ DC 3.3V입니다.

※ 주의 : AREF핀은 아날로그 입력포트의 사용 여부와 상관없이 반드시 연결해야 합니다.

UART

번호	이름	방향	설명
P3.5	U0TX(0.4)	입/출력	uio 0.4 / uarto tx
P3.6	U0RX(0.5)	입/출력	uio 0.5 / uarto rx
P3.9	U0RTS(0.8)	입/출력	UIO 0.8 / UARTO RTS / UARTO TxDE
P3.10	U0CTS(0.9)	입/출력	uio 0.9 / uarto cts
P3.11	U1TX(0.10)	입/출력	UIO 0.10 / UART1 TX
P3.12	U1RX(0.11)	입/출력	UIO 0.11 / UART1 RX
P4.1	U1RTS(0.12)	입/출력	UIO 0.12 / UART1 RTS / UART1 TxDE
P4.2	U1CTS(0.13)	입/출력	UIO 0.13 / UART1 CTS

UART는 2개이며 각각 RXD, TXD, RTS, CTS 및 TxDE핀을 제공합니다.

SPI

번호	이름	방향	설명
P3.1	NSS(0.0)	입/출력	uio 0.0 / Spi NSS
P3.2	SCK(0.1)	입/출력	UIO 0.1 / SPI SCK
P3.3	MISO(0.2)	입/출력	uio 0.2 / Spi Miso
P3.4	MOSI(0.3)	입/출력	uio 0.3 / Spi Mosi

SPI 통신을 위한 NSS, SCK, MISO 그리고 MOSI핀을 제공합니다.

I2C

번호	이름	방향	설명
P3.7	SCL(0.6)	입/출력	UIO 0.6 / I2C SCL
P3.8	SDA(0.7)	입/출력	UIO 0.7 / I2C SDA

I2C 통신을 위한 SCL과 SDA핀을 제공합니다.

하드웨어 타이머/카운터

번호	이름	방향	설명
P2.3	HT0(1.6)	입/출력	UIO 1.6 / Hardware Timer/Counter 0
P2.4	HT1(1.7)	입/출력	UIO 1.7 / Hardware Timer/Counter 1
P2.5	HT2(1.8)	입/출력	UIO 1.8 / Hardware Timer/Counter 2
P2.6	HT3(1.9)	입/출력	UIO 1.9 / Hardware Timer/Counter 3

하드웨어로 구현된 정밀한 타이머/카운터로 4개가 내장되어 있습니다.

SPC

번호	이름	방향	설명
P2.8	SRO(0.15)	출력	UIO 0.15 / Slave Reset Out
P4.3	STX(1.10)	출력	UIO 1.10 / Slave TX
P4.4	SRX(1.11)	입력	UIO 1.11 / Slave RX

SPC는 현재 P4M-400이 사용할 수 없습니다. 따라서 이 핀들은 디지털 입/출력 용도로만 사용하시기 바 랍니다.

※주의 : SPC 포트는 향후 다른 목적으로 사용될 수 있습니다.

응용 회로도

P4M-400 인터페이스를 위한 응용 회로도 입니다.

• P4M-400-Interface-PO.pdf

소프트웨어(IDE)

PHPoC 디버거

PHPoC 디버거는 PHPoC 제품의 설정 및 개발에 사용되는 소프트웨어 입니다. 따라서 PHPoC 제품을 사용하기 위해서는 PC에 이 프로그램을 설치해야 합니다.

- PHPoC 디버거 다운로드 페이지
- PHPoC 디버거 매뉴얼 페이지

PHPoC 디버거의 기능 및 특징

- PHPoC 제품으로 php파일 업로드
- PHPoC 제품의 php파일들을 로컬 PC에 다운로드
- PHPoC 제품의 php파일들을 편집
- PHPoC 스크립트 디버깅
- PHPoC 제품 리소스 상태 확인
- PHPoC 제품 환경 값 설정
- PHPoC 제품 펌웨어 업그레이드
- 지원 플랫폼: MS 윈도우

제품 연결

USB로 연결

1. P4M-400의 USB 디바이스 포트와 PC를 USB케이블로 연결합니다.

2. PHPoC 디버거를 실행합니다.

3. 연결 된 COM PORT를 선택하고 연결버튼(

4. USB가 정상적으로 연결 되면 연결 버튼은 비활성화 되고 연결 끊기 버튼()이 활성화 됩니다.

원격 연결

펌웨어 버전 1.4.0부터 네트워크로 제품에 연결하는 원격 연결 기능이 제공됩니다. 원격 연결에 관한 자 세한 내용은 PHPoC 디버거 매뉴얼의 해당 부분을 참조하시기 바랍니다.

초기화

설정 값 초기화

설정 값 초기화를 수행하면 사용자 비밀번호를 제외한 모든 설정 값이 공장 출고상태로 초기화 되며, 제 품에 저장되어 있던 인증서도 삭제 됩니다.

• 설정 값 초기화 절차

순서	절차	제품 상태	STS LED
1	ISP#에 LOW 펄스 입력 (1초 이하로 짧게 입력)	버튼설정모드 진입	켜짐
2	ISP#에 LOW 입력 (5초 이상 LOW 상태 유지)	초기화 준비 중	빠르게 깜박임
3	5초 후 STS LED 확인	초기화 준비 완료	꺼짐
4	준비 완료 후 2초 이내에 ISP#의 LOW 입력을 해제 (2초가 넘으면 순서3으로 되돌아감)	초기화 진행	켜짐
5	초기화 후 자동 리부팅	초기화 완료	꺼짐

공장 초기화

공장 초기화를 수행하면 사용자 비밀번호를 포함한 모든 설정 값이 공장 출고상태로 초기화 되며, 제품 에 저장되어 있던 인증서와 모든 파일들도 삭제 됩니다. 공장 초기화를 수행하기에 앞서 제품에 저장 된 파일들을 반드시 백업하시기 바랍니다.

• 공장 초기화 절차

웹 인터페이스

PHPoC는 스크립트 실행과 독립적으로 동작하는 웹 인터페이스용 태스크가 제공됩니다. 웹 인터페이스 의 통신포트는 TCP 80번이며 인터넷 익스플로러, 크롬, 파이어폭스 또는 사파리 등 다양한 웹 브라우저 를 통해 접근이 가능합니다.

사용 방법

웹 인터페이스를 사용하기 위해서는 기본 웹 페이지인 "index.php" 파일이 제품에 저장되어 있어야 합니다. 제품을 네트워크에 연결하고 PC와 제품의 IP주소를 같은 서브넷으로 설정한 후 웹 브라우저 주소 창에 제품 IP주소를 입력하여 웹 페이지로 접속 합니다.

РНРоС	×	
(← → C +	☆ 192.168.0.1	0 🏠 💲 ≡
	Hello World	

파일 이름이 "index.php"가 아닌 경우에는 제품 IP주소 뒤에 파일 경로를 다음과 같이 입력해 주어야 합니다.

Р РНРоС	×	
← ⇒ C ⁱ	A 192.168.0.1/a.php] ଓ 😭 🔮 ≡
	Hello World	

웹 인터페이스 활용

PHPoC가 웹 서버로 동작할 때 웹페이지에 포함된 php코드를 실행합니다. 따라서 사용자는 웹 페이지 안에 각각의 인터페이스들(디지털 I/O, UART 및 ADC등)과 데이터를 주고받는 코드를 삽입할 수 있습니 다.

특히 웹 소켓을 활용하면 이러한 데이터를 실시간으로 주고 받을 수 있습니다.

비밀번호 설정

제품에 비밀번호를 설정하면 USB 또는 네트워크를 통해 제품에 연결할 때 반드시 해당 비밀번호를 입 력해야 합니다.

비밀번호 설정에 관한 자세한 내용은 PHPoC 디버거 매뉴얼의 해당 부분을 참조하시기 바랍니다.

무한 리셋 상태에서 복구하기

PHPoC는 기본적으로 부팅 후 자동적으로 정의 된 스크립트를 실행합니다. 따라서 system함수의 "reboot" 명령어 등을 소스코드에서 잘못 사용하면 제품이 무한 리셋 상태에 빠질 수 있습니다. 이를 복 구하기 위해서는 부팅 후 스크립트의 실행을 멈춰야 합니다. 다음 절차대로 따라 하시기 바랍니다.

1. ISP모드로 진입하기

ISP# 핀에 LOW를 입력한 상태에서 전원을 공급하여 ISP모드로 진입합니다. ISP모드로 진입하면 PHP코드는 실행되지 않는 상태에서 디버거로 연결할 수 있습니다.

2. PHPoC 디버거로 제품 연결

PC와 제품을 USB케이블로 연결하고 포트를 선택해 열기 합니다. 이 때 제품이 ISP모드라는 메시 지가 팝업 됩니다.

3. 제품 리부팅

PHPoC 디버거의 기능 메뉴의 "제품 리부팅"을 실행합니다. 제품이 리부팅 한 후 ISP모드에서는 빠져 나오지만 PHPoC 스크립트의 실행은 하지 않는 상태가 됩니다.

4. 코드 수정

무한 리셋 증상을 발생시킨 코드를 적절하게 수정합니다.

디바이스 정보

구분	개수	파일경로	비고
UART	2	/mmap/uart0~1	-
NET	2	/mmap/net0~1	net0: 이더넷, net1: 무선랜
TCP	5	/mmap/tcp0~4	-
UDP	5	/mmap/udp0~4	-
디지털 I/O	2	/mmap/uio0~1	UIO 0: pin #0 ~ #16 UIO 1: pin #0 ~ #3, #6 ~ #11
ADC	2	/mmap/adc0~1	-
ST	8	/mmap/st0~7	-
HT	4	/mmap/ht0~3	-
SPI	1	/mmap/spi0	-
I2C	1	/mmap/i2c0	-
RTC	1	/mmap/rtc0	-
UM	4	/mmap/um0~3	-
NM	1	/mmap/nm0	-

※ 각 디바이스 사용에 관한 자세한 내용은 PHPoC Device Programming Guide for p40 문서를 참조하 시기 바랍니다.

개발보드

이 보드는 P4M-400전용 개발보드입니다.

1. 무선랜 어댑터 연결을 위한 USB 호스트 포트

이 보드는 USB형태의 무선랜 어댑터를 연결할 수 있는 USB호스트포트를 제공합니다. 이 포트에 USB 무 선랜 어댑터를 연결하면 P4M-400을 802.11b/g 무선네트워크에 연결할 수 있습니다.

※ 주의: 무선랜 어댑터는 Ralink사의 RT3070/5370칩셋 어댑터만 사용 가능합니다

2. 전원

• DC 5V Input 포트

보드 전체에 전원을 공급하는 주 전원 입력 포트 입니다. 입력 전압은 DC 5V이며, 포트 사양은 다음과 같습니다.

• USB 디바이스 포트(마이크로 USB)

이 포트는 보조 전원 입력 포트 입니다. 이 포트만으로 전원을 공급하는 경우에는 전류가 부족하 여 제품 동작이 올바르지 않을 수 있습니다.

3. PC 연결을 위한 마이크로 USB 디바이스 포트

제품과 PC와의 연결을 위한 포트 입니다. 이 포트를 통해 USB케이블로 제품과 PC를 연결한 후 개발 툴(PHPoC 디버거)을 이용해 제품에 접근할 수 있습니다. 또한 이 포트는 제품에 DC 5V의 전원을 공급 하는 역할도 합니다.

4. ISP버튼

이 버튼을 누르면 P4M-400의 ISP#핀에 LOW 신호가 인가됩니다.

5. 이더넷

P4M-400의 10/100Base-TX 이더넷 인터페이스를 제공합니다. RJ45에 내장된 LED들(L0, L1)은 P6 점퍼 를 통해 연결하여 Low Active로 구동 가능합니다.

6. 리셋버튼

이 버튼을 누르면 P4M-400 RESET#핀에 LOW 신호가 인가됩니다.

7. 배터리

P4M-400의 RTC용 배터리로 RENATA사의 CR1225가 장착됩니다. 배터리 소켓은 CR1220과도 호환됩니다.

※ 내장 배터리에 대한 보다 자세한 내용은 데이터시트를 참조하시기 바랍니다.

8. LED

이 보드에는 2개의 LED가 있습니다.

LED	색	설명
3.3V	빨간색	보드에 전원이 정상적으로 공급되면 켜짐
P8 연결 LED	초록색	사용자 정의 LED

9. JP1 / JP2 / JP3 / JP4

이름	설명
JP1	PHPoC 보드 호환 인터페이스 소켓
JP2	PHPoC 보드 호환 소켓
JP3	PHPoC 보드 호환 소켓
JP4	예약 됨

JP1의 핀 번호는 다음과 같습니다.

※ JP1, JP2 및 JP3은 PHPoC 보드용 확장보드를 장착할 수 있도록 설계되었습니다.

10. P1 / P2 / P3 / P4

P1 ~ P4는 P4M-400을 장착하기 위한 포트입니다.

※ 주의 : 모듈의 오삽 및 역삽을 방지하기 위해 P1 ~ P4 커넥터의 위치는 좌우 비대칭으로 설계되었습 니다.

11. P5

이 포트의 점퍼를 연결하면 ADC의 기준전압핀(AREF)에 3.3V가 연결됩니다.

12. P6

RJ45에 장착된 LED에 신호 입력을 위한 커넥터입니다. 각각의 핀이 RJ45의 LO와 L1핀에 연결되어 있으며 Low Active입니다.

13. P7

예약된 포트입니다. 점퍼는 반드시 1번과 2번핀에 연결되어야 합니다.

14. P8

P4M-400의 UIO0.14의 사용방법을 선택하기 위한 점퍼입니다. UIO0.14를 JP1의 22번핀(14)에 연결하거 나 사용자 정의 LED에 연결할 수 있습니다.

15. P9

UIO0.15는 JP1의 24번핀(15)에 연결됩니다. 점퍼는 반드시 다음 그림과 같이 연결하십시오.

