제품 소개

PES-2602

4포트 포토커플러 입력보드인 PES-2602는 아두이노용 PHPoC 쉴드 제품 전용 스마트 확장보드입니다. 이 보드를 이용하면 아두이노 스케치를 통해 외부기기의 전압방식(Wet Contact) 또는 접점방식(Dry Contact) 출력을 모니터링할 수 있습니다.

※ 주의 : 이 확장보드를 사용하기 위해서는 반드시 아두이노와 R2 이상 버전의 PHPoC 쉴드가 필요합니 다!

PHPoC 쉴드용 스마트 확장보드란?

PHPoC 쉴드용 스마트 확장보드는 자체 디바이스와 전용 펌웨어를 내장하고 있습니다. 이 보드는 PHPoC 쉴드와 전용 통신 포트를 이용해 마스터-슬레이브 방식으로 통신합니다. 하나의 PHPoC 쉴드에 여러개의 스마트 확장보드를 연결할 수 있으며 각각의 스마트 확장보드에는 반드시 슬레이브 아이디를 설정해야 합니다.

치수

제품 본체

※ 치수(단위 : mm)는 제품 상태 및 재는 각도 등에 따라 약간의 오차가 있을 수 있습니다.

터미널블록

이 보드는 8폴 터미널블록을 사용합니다. 치수는 각 터미널블록의 데이터시트를 참조하시기 바랍니다.

- T형 터미널블록 데이터시트
- S형 터미널블록 데이터시트

회로도

PES-2602의 회로도 입니다.

• PES-2602-V10-PO.pdf

레이아웃

1. 입력포트

입력포트는 5mm간격의 1 by 8 터미널 블록으로 되어 있습니다. 각 포트는 포토커플러를 통해서 절연되 어 있으며 전압입력 방식(WET contact), 접점입력 방식(DRY contact), NPN트랜지스터와 PNP트랜지스 터 연결을 지원합니다.

디지털 입력부 회로도

입력포트와 DI.G단자 사이가 쇼트(short)되면 ON이 되는 방식입니다. 이 방식을 사용하기 위해서는 제

접점입력 방식(Dry contact)

사용자 장비 연결 부분
DI0~3
DI.G

전압입력을 위한 사용자 장비 연결 방법은 다음과 같습니다.

	소건
최대 입력 전압	DC 30V
ON	DC 3V 이상
OFF	DC 1.5V 이하

입력포트의 전압 입력 조건은 다음과 같습니다.

전압입력 방식(WET contact)

품 외부에서 DI.V단자와 DI.G단자에 전원을 공급해야 합니다. 접점 입력을 위한 사용자 장비 연결 방법 은 다음과 같습니다.

NPN 트랜지스터 연결

NPN 트랜지스터 연결은 다음과 같습니다.

PNP 트랜지스터 연결

PNP 트랜지스터 연결은 다음과 같습니다.

2. 슬레이브 아이디 스위치

슬레이브 아이디는 마스터인 PHPoC 쉴드가 스마트 확장보드 각각을 구분하는데 사용됩니다. 하나의 PHPoC 쉴드에 연결되는 각 스마트 확장보드는 고유한 슬레이브 아이디를 사용해야 합니다. 슬레이브 아이디는 1부터 14까지 14개 중 하나로 설정할 수 있으며 다음과 같이 4개의 딥스위치를 조정 하여 설정합니다.

3. LED

이 보드에는 5개의 LED가 있습니다.

LED	설명
STS	아이디 설정이 정상일 때 > 1초마다 켜짐/꺼짐 반복 아이디 설정이 올바르지 않을 때 > 빠르게 깜박임 PHPoC 쉴드와 통신중이지 않을 때 > 꺼짐
0	0번 입력이 ON일 때 켜짐

LED	설명
1	1번 입력이 ON일 때 켜짐
2	2번 입력이 ON일 때 켜짐
3	3번 입력이 ON일 때 켜짐

사용하기

이 보드를 사용하는 방법은 다음과 같습니다.

1. PHPoC 쉴드와 아두이노에 연결

이 보드는 단독으로 사용할 수 없습니다. 반드시 아두이노와 아두이노용 PHPoC 쉴드에 연결하여 사용 하시기 바랍니다.

2. 아두이노용 라이브러리 설치

아두이노 IDE의 라이브러리 매니저를 통해 Phpoc 라이브러리와 PhpocExpansion 라이브러리를 설치합 니다. 아두이노용 PHPoC 쉴드와 스마트 확장보드를 사용하려면 반드시 두 라이브러리를 모두 설치해야 합니다. 라이브러리에 대한 자세한 내용은 다음 문서를 참조하시기 바랍니다.

• PHPoC 쉴드 라이브러리 레퍼런스

3. 예제코드 활용

본 매뉴얼과 라이브러리에 포함된 예제코드를 활용하여 프로그래밍 하시기 바랍니다.

클래스 및 함수

클래스

이 확장보드를 사용하기 위해서는 아두이노 PHPoC 라이브러리의 ExpansionPhotoInput 클래스를 사용 합니다.

멤버 함수

ExpansionPhotoInput 클래스의 사용 가능한 멤버함수는 다음과 같습니다.

멤버 함수	설명
int getPID(void)	제품 아이디 읽기
char *getName(void)	제품명 읽기
ExpansionPhotoInput(int sid, int port)	특정 입력포트의 인스턴스 생성
bool isOn(void)	입력포트 상태가 ON인지 확인
bool isOff(void)	입력포트 상태가 OFF인지 확인
void setDelay(int ms)	입력신호 유지시간 설정(밀리 초)

setDelay 함수

이 보드는 이 함수로 설정된 지연시간보다 짧게 유지되는 신호들을 무시합니다. 단위는 밀리초 이며, 설 정 가능한 가장 작은 값은 1 밀리 초 입니다. 지연시간을 0으로 설정하면 최소 값인 1 밀리 초로 자동 설 정됩니다. 특정 포트에 대한 지연시간 설정은 해당 포트에 대해 다시 지연시간 설정을 할 때까지 적용됩 니다.

이 명령은 채터링(chattering) 현상에 의한 영향을 없애기 위해 사용됩니다. 채터링 현상이란 수동으로 스위치를 켜거나 끌 때 접촉의 진동에 의해 아주 짧은 시간의 on/off신호가 반복되는 것을 말합니다. 이 현상은 특정 시스템에서 오동작을 일으킬 수 있습니다.

입력포트 상태 확인

예제

• 아두이노 소스코드

```
#include <PhpocExpansion.h>
#include <Phpoc.h>
```

```
byte spcId = 1;
```

```
ExpansionPhotoInput input0(spcId, 0);
ExpansionPhotoInput input1(spcId, 1);
ExpansionPhotoInput input2(spcId, 2);
ExpansionPhotoInput input3(spcId, 3);
```

```
void setup() {
Serial.begin(9600);
while(!Serial)
```

;

```
Phpoc.begin(PF_LOG_SPI | PF_LOG_NET);
Expansion.begin();
```

```
Serial.println(input0.getPID());
Serial.println(input0.getName());
```

```
}
```

```
void loop() {
    if(input0.isOn())
        Serial.println("Port 0: 1");
    else
        Serial.println("Port 0: 0");
    if(input1.isOn())
        Serial.println("Port 1: 1");
    else
        Serial.println("Port 1: 0");
    if(input2.isOff())
        Serial.println("Port 2: 0");
    else
        Serial.println("Port 2: 1");
```

```
if(input3.isOff())
    Serial.println("Port 3: 0");
else
    Serial.println("Port 3: 1");
```

```
Serial.println();
```

delay(1000);

}

• 출력 결과(예)

Port 0: 0 Port 1: 1 Port 2: 0 Port 3: 1 ...